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ABSTRACT

The interpretation of complex sensory data is fundamental to a variety of

applications domains, and the matching of stored model structures to observed

data from one or more sensors is an important approach to this problem. The

minimum representation criterion is a metric of the overall complexity of a

mode/ and facilitates the unsupervised identification of model structure as well

as parameters. This paper describes the use of this approach to the problem

of matching noisy gary-leveI images to attributed models. Using the minimum

representation criterion, the match between gray-level image features and an

attributed graph model incorporates a representation size measure for the modeled

points, the data residuals, and the unmodeled points. This structural representation

identifies correspondence between a subset of data points and a subset of model

points in a manner which minimizes the complexity of the resulting model. The

minimum representation matching algorthm described in this paper is polynomial

tlin complexity, and exhibits robust matching performance on examples where less

-than 30% of the features are reliable. The minimum representation principle is
_xtendible to related problems using three-dimensional models and multisensor

d_ta matching
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Index Terms: Attributed graph, correspondence, image matching, image

models, representation size, shape recognition.
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1 INTRODUCTION

Matching of models to image features is a fundamental step in computer vision

systems. Such matching may take place at different levels of these systems, from

template matching of raw images to symbolic matching of relational models. In

this paper, we address the problem of matching localized spatial features with

arbitrary attribute sets to either idealized or learned models. In mathematical

terms, we match spatial patterns of points, where each point has an associated

attribute vector with quantitative and symbolic values. The minimal representation

criterion used to achieve an acceptable match is a principal topic of this paper.

Image matching is difficult to achieve with sufficient generality, speed, and

robusmess to be useful in practical systems. Many proposed algorithms are highly

dependent on a choice of particular features and model representation, and they

often require interactive or heuristic methods to extract features. Adding generality

to matching procedures has been difficult particularly because evaluation functions

or match quality measures do not generalize well. Image matching is inherently

complex from a computational point of view, since the number of possible

matches in general grows exponentially with the number of features. Polynomial

complexity is an important property of any practical approach.

Good image matching algorithms must be able to handle feature uncertainty



± =

=

r ,

w

m

E =

including missing data, extra features, and noisy attributes. This requirement

has been particularly difficult to achieve since most evaluation functions are not

able to handle missing or extra data in a consistent non-heuristic fashion. The

representation criterion presented in this paper is inherently normalized to match

size and number of attributes and directly accomodates missing and extra data.

This paper describes the minimal representation criterion [1,2,3,4] as a basis

for image transformation and correspondence matching. We specifically address

the problem of two-dimensional rigid, attributed point sets with missing and extra

points. The algorithms developed are polynomial in complexity and near-optimal

for this criterion. Examples of performance on highly variable gray-level images

are shown.

Section 2 of this paper defines the image matching problem. Section 3 presents

the minimal representation criterion principles. Section 4 describes a usually op-

timal, polynomial time algorithm for image matching and transformation. Section

5 presents some examples of the matching procedure.

2 ATTRIBUTED IMAGE MATCHING

Image matching problems have been approached using a variety of different

hypothesize-and-test techniques in which potential matches are hypothesized and

tested against evaluation criteria. These methods include template correlation [5],

statistical pattern recognition [5], parameterized geometric fitting [6], and many

different relational structure methods such as graph morphisms [7], compatibility

graphs [8,9], and weighted relational matching [10]. In addition, heuristic tech-

niques [ 11], Hough transform techniques [12], and relaxation labelling techniques

[13] have been proposed. These references indicate examples of the various

approaches, and a more detailed comparative discussion of these algorithms is

included in [4]. The approach described in this paper is basically a geometric

fitting technique which maps point sets to geometric models using a new metric

for evaluating match quality. The minimal representation metric does not depend

on the specific form of geometric modelling and is extendible to more general

relational structure models.

In this paper, we consider images of rigid objects which have undergone

arbitrary translation, rotation, and scaling in a two-dimensional plane parallel
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to the image plane. Each input image of an object is represented as a set

of features with attributes, and each object model is represented in a similar

manner for a given view of the object. In practice, the input image feature

representation is extracted from the raw image data using other computer vision

algorithms. The corresponding object model representation may be derived

from a purely geometric model or by learning from a series of observations

of input images. In addition to translation, rotation, and scaling, the image

feature representation will include distortion, noisy attributes, missing (hidden

or occluded) features, and added features. The image matching problem requires

identification of the correspondence match between features and an associated

geometric transformation which 'aligns' the image with the object model. The

existence of an arbitrary transformation and the contribution of distortion and

noise require a search over possible choices using an evaluation criterion which

is tolerant to these effects. In this paper, the minimal representation criterion is

used for the selection of the best correspondence and transformation.

An input image data feature representation consists of the ordered pair D =

(F,A) where F = {fi, i = 1,...,N} is the set of feature labels, and A =

{aij, i = 1,... ,N, j = 1,.,. ,N_} is the set of feature attributes.

Each feature may have multiple attributes, and the set of attributes may differ

among features. However, every feature in an image is required to have (x,y)

position attributes denoted by

all = ui = x-position of _,

ai2 = vi = y-position of j_.

Similarly, an object model feature representation consists of an order pair

R = (G, B) where G = {9i, i = 1,..., M} is the set of model feature labels, and

B = {bij, i = 1,..., M', j = 1,... ,Mb} is the set of model feature attributes.

In this case

bil = xi = x-position of gi,

hi2 = Yi = y-position of gi.

The attributes represented by A and B may be of four types:
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1. Positional - (x,y)-position (required of every feature),

2. Numerical - numerical measures such as length, angle, area, curvature,

number of neighbors,

3. Symbolic - symbolic labels such as color, texture,

4. Relational - relation of a feature to other features such as connected-to, on-

top-of.

This data structure considers attributes independently and facilitates the de-

velopment of the representation criterion which is strictly cumulative with respect

to the set of features. For the problems considered in this paper, relational at-

tributes will not be used. For highly noisy data relational attributes are difficult to

incorporate into matching, and for rigid objects they are less useful since relative

position is maintained by the rigid transformation.

2.1 Correspondence

Given an object model R and an input image I with data feature representation

D, a match between them is defined by a correspondence and a transformation.

The correspondence maps the model features G to the data features F. The

transformation is the set of' parameters which defines the translation, rotation,

and scaling used to geometrically align the corresponding features. In this paper,

we assume that all correspondence matches are one-to-one, that is, one model

feature matches to only one image feature and vice-versa. This assumption may

be generalized, but simplifies the search problem and provides solutions which

are more easily interpreted.

The size of the correspondence match, ._,_ _< rnin[M, N] ,is the number

of model features which have a correspondence to a designated data feature.

Not all model features have matches, and there may be added features in the

image as well. The correspondence itself is expressed by the set of indices:

C = {ci, i= 1,...,M},, where

ci = index of the image feature, fc,, which corresponds to the indicated model

feature, gi, when a match occurs and,

= O, when no match occurs,

and 1 _< ci _< .hr. A particular correspondence match may therefore be
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represented by the ordered pair (i, ci).

2.2 Transformation

Given a correspondence (i,i) where the model feature gi is at point (xi,Yi)

and the image data feature j5 is at point (Ui,Vi), then the match is completely

defined by a transformation T which transforms (Ui,Vi) ---* (Xi',Yi'). In general, this

transformation is defined by four parameters, T = (tu, tv, O, s), where

(tu, tv) = translation,

O = rotation angle,

s = scaling magnitude.

Fig. (1) illustrates such a transformation from (Ui,Vi) to (xi',Yi'). While the

data point is matched to the model point, the transformed data point does not

necessarily align perfectly with the model point. The transformation will be

derived from an evaluation criterion over a set of distorted and noisy data points,

and will align relative to that global measure.

3 MINIMAL REPRESENTATION CRITERION

The minimal representation criterion [1,2,3] was introduced as an approach

to unsupervised signal and data analysis in which the complexity of the data

representation is used as a criterion for the choice of model structures and model

parameters. The approach incorporates elements which express the complexity

of the modeling procedure, the model size, and the size of the data residuals. In

contrast to traditional mean square error measures of model fit which do not permit

discrimination among model structures, the minimal representation size explicitly

incorporates model structure and represents the tradeoff between complexity of

the model structure and the resulting error in predicting the data points. This

approach was demonstrated for several classes of parametric statistical models

including evaluation of the order of an autoregressive model and determination

of the number of clusters in a multivariate data sample. In [2], these techniques

were applied to the unsupervised analysis of biomedical signals which resulted in

a system for the automatic modeling, segmentation, and symbolic representation

of complex patterns associated with medical diagnostic decisions.
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Figure 1 Transformation of an image point at (uz,vi)to a new point (xi',yi') using
transformation T with four parameters: translation (t,,tv). rotation O, and scaling s.
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The minimal representation criterion is based on a principle of minimum com-

plexity of a program which explicitly regenerates observed data. Such a program

includes a procedure, a moael, and data residuals, and the size of the overall

program is regarded as a measure of the complexity of the representation. In this

approach, a simple model may require a complex data residual representation,

while a more complex model will simplify the data residual representation. This

tradeoff in overall complexity between model size and data residual size inher-

ently provides a basis for choosing among alternative models. More generally,

the procedure provides a tool for unsupervised decision-making.

Consider an observed data vector x = Ix1, x2 .... XN]. The representation of

this data vector is viewed as a program which regenerates the data points with

some known resolution. In [1], this program is more formally defined in terms of

a classic Turing machine model of computation. There may, in fact, be several

different programs, rr, which correctly generate the data points, and the 'correct'

behavior of the system is regarded as the minimum size program p* among these,

such that
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where s (.) is the size of the program. As discussed in [1], the shortest program

in an ensemble of such programs generated by a random process is the most

likely program.

Each program, p, includes a number of segments which provide procedure

code, model parameters, correspondence parameters, and data residuals. Each

different algorithm or different model has a different set of program segments. In

our previous work on clustering [1], for example, the model parameters included

the cluster center positions in multivariate space, while the data residuals were

encoded relative to these centers using a code which minimized the length of

the data representation by encoding more probable (closer to the cluster center)

data points with shorter length codes. In the image matching problem, the

representation size s(p) of each program includes the following terms:

(p) : z + + [cq(x)] +

where

L = size of the program independent of the choice of model,

s(q) = size of model parameters, including the transformation, the

number of modeled data points, Nm, the correspondence match, and

the feature attributes,

s[Cq(x)] = [- log Pq(x) ], where

Cq(x) = encoded residuals of modeled points, where

Pq(x) = probability density function of the residuals of the modeled

subset of observed data point attributes relative to the model q, and

i i
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is the representation size for the unmodeled data points. When all data points

have uniform attribute sets, we can further simplify this to

s(e)=(N-Nm)_S(aj),

J

=(N-Nm)Sa,

where Sa is the total representation size for the attributes of each unmodeled data

point. In practice, Sa depends on the predefined resolution in bits of each of the

attributes and is therefore usually fixed for a given problem.

The representation of the data residuals is based on an encoding which

represents the more likely points by shorter code strings. There are many specific

coding schemes which might be used, and we have implemented one such scheme

which is based on a truncated hyperbolic distribution of errors. Incorporating this

measure, we can write the representation size equation for a fixed model and data

size in the following form:

_(p)=z: + NmZog2M+ Z_ + (N-Xm)S_,

where

_ = _ Zog[_;_E_j + 11.

Eij is the error due to the jth attribute at feature i,

Eij = Errorj [gi, fc,],

and w6 is a weighting parameter which can be used to adjust the relative weight

of attributes for different specific applications. For the image matching problem

we have used Euclidean error measures as a basis for the encoding of position

attributes, and the resulting representation size equation is

8 (p) L + NrnlOg2o_/f + Z log2 [((xti-xi)2 + (Y: -yi)2) 1/2 ]:+ 1 +

No

_ Zoj2[w E,i + 11 + (N - x_) so.
i j=3

For the experiments described in this paper the second term Nm log2 M was

considered a constant for each set of experiments.
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4 IMAGE MATCHING ALGORITHM

For a given model and observed data, the best match is defined by an optimal

transformation and an optimal correspondence between some subset of the data

points and a subset of the model points. These two steps may be considered

somewhat independently. An optimal transformation will exist for each possible

correspondence which is chosen, and the algorithm must search over many

possible correspondences in order to find an optimal match.

4.1 Transformation

The minimal representation transformation is in general quite different from

the least mean square error transformation which is commonly used. A closed

form analytical expression for the least mean squared error transformation may

be derived and applied directly to a given model and subset of data points.

The minimal representation match involves a logarithmic transformation of the

square error terms and does not lend itself to a closed form analytical solution.

We have used two algorithms for the calculation of the minimal representation

transformation:

Numerical optimization - Partitioning of the search space using bounds on the

volumes was implemented and combined with a random adaptive search for local

minima. Hundreds of examples were studied using Monte Carlo techniques and

the resulting transformations were examined and compared to mean squared error

transformations. The minimal representation size results were stable and robust,

particularly in the presence of added or missing data points.

Two-on-two transformations - It can be shown analytically that in one-

dimension, a minimal representation transform always has two zero position error

correspondences. In two dimensions, less than 1% of the optimal transformations

found by simulation did not have two-on-two transforms, and for those cases

the difference in the transformations was minor. We have therefore implemented

a usually optimal transformation based on the two-on-two transformation. This

approach dramatically decreases the complexity of the algorithm, reducing a con-

tinuous parameter search in four dimensions to a discrete search over (N 2 - N)/2

points.

4.2 Correspondence

9
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Figure 2 Two point sets and the bipartite graph of their possible correspondences.

The correspondence problem of finding the match between subsets of data

points and model points which minimizes the representation size is solved by

converting it to an assignment problem in the following form. Based on the

minimal representation size equation, each pair of model and data points has two

alternative representations. As a modeled point, the pair may have a representation

size, Sp, associated with the model and residuals. As an unmodeled point, the

pair will contribute a fixed size Sa. Fig (2) shows a set of model points, a set of

transformed data points, and a graph of their possible interpoint mappings. The

transformation parameters are not optimal and were chosen for the purpose of

illustration. The point numbers do not indicate correspondence. The graph of

interpoint distances is a complete bipartite graph, and the optimal correspondence

can be viewed as an optimal assignment of left nodes to right nodes which

minimizes the representation size.

In order to calculate the optimal correspondence, we

i. Assign the pairwise representation size to each arc of the complete bipartite

graph.

2. Replace those representation sizes which are larger than Sa by the value Sa

3. Let N' = max (MN)

4. If M < N', add N'-M 'extra' nodes to the set of model nodes. Connect each

extra model node to every data node using N arcs, each with weight Sa.

Tr'ans formed

Data
Points

I0
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Data
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Figure 3 Expanded bipartite graph with representation sizes indicated as distance measures.

5. If N < N', add N'-N 'extra' nodes to the set of data nodes. Connect each

extra data node to every model node using M arcs, each with weight zero.

The resulting graph for Fig. (2) is shown in Fig. (3) with Sa = 5.5 bits. The

optimal correspondence is now defined by choosing N' arcs such that (1) the sum

of the arc weights is a minimum and (2) no two arcs share the same endpoint. A

valid correspondence is indicated by a resulting arc weight which is less than Sa.

All other arcs indicate that there is no correspondence between the two endpoints.

The sum of the chosen arc weights is the representation size of the resulting match.

The assignment problem in a bipartite graph has been studied extensively

[14], and a number of efficient algorithms exist. A straightforward solution would

require evaluation of N'! sets of arcs. Available algorithms typically are of order

O(N '3) or O(MN min(M,N)) [15]. The latter algorithm was implemented here.

4.3 Complexity

,

2.

3.

The complexity of the resulting algorithm may be summarized as follows:

Compute optimal two-on-two transformations - O(M2N2),

Compute the graph of representation sizes - O(MN),

Compute the optimal match using the assignment algorithm - O(MN

min(MN)).

11
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For large problems the computational complexity of the resulting algorithm

is O(M3N 3 min(M,N)). While this algorithm still requires significant computation

in its current form, on a typical size problem with N = M = 30, the computation

is reduced relative to a brute force combinatorial algorithm by a factor of 1025.

Many of the previous matching schemes have utilized heuristic techniques to

reduce the computational complexity and did not optimize an objective measure

of match quality. The algorithm described here produces usually optimal matches

in polynomial time.

4.4 Improved Matching Efficiency

The performance of the basic matching algorithm can be improved using a

number of algorithmic techniques and heuristics. The three methods summarized

below utilize increasing assumptions about the characteristics of the data features.

1. Precompute Representation Sizes: The construction of the representation

size graph requires the computation of MD representation sizes. Given a set

of model points, it is possible to precompute all of the necessary representation

sizes in a large x-y array. With such an array, the representation size

calculation between the model point and any transformed data point is reduced

to a single array access. Since a model is a collection of points, a number of

separate arrays are required to represent all the possible representation sizes.

The arrays are constant for a given model.

2. Restrict Transform Space: In most practical applications, there are fixed

limits on the range of possible data point transformations. Those transforms

which fall outside of this range can be ignored. In a typical vision application,

the camera parameters are often fixed so that the scale of the data features

is known within a few percent of their true value. With such scale, rotation,

or translation restrictions, it is often not necessary to generate many of the

candidate tranforms, and the search space is correspondingly reduced.

3. Approximate Method: In the basic matching algorithm, we explore all

possible transforms without screening the candidate matches based on error

criteria. This approach has provided an accurate view of the performance of

the algorithm since it searches exhaustively over the candidates. In practice,

one would like to reduce this search space based on prior screening of the

errors. Such a fixed set of prescreened data points where only the most likely

transformations and correspondences are explored, greatly reduces the search

12
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problem and adapts it well to practical situations.

5 EXPERIMENTAL RESULTS

The matching algorithm described in this paper was tested on a variety of

gray-level images with different degrees of complexity. Features extracted for

matching are straight line segments and the vertices formed by the intersections

and endpoints of such segments. The Popeye image processing system [16] was

used to extract these edge-related figures by filtering, thinning, fitting of local line

segments, logical reconnection, and simplification of the resulting line graph.

The line segments and their vertices are represented with a number of attached

attributes. Each type of feature has a positional attribute. The position of a line

segment is given by the center point of the line; while the position of a vertex is

the point where two or more line segments intersect. In addition to the positional

attribute, each segment also has a length attribute and a slope attribute. Vertex

non-positional attributes include the number of line segments entering the vertex

and the angle at which they enter.

Two examples of the feature extraction process are illustrated in Figs. (4) and

(5). Fig. (4) shows a simple geometric shape with high contrast. The resulting

edge-related features are clear and reliable as indicated by the dark lines and

corner symbols in the figure. Fig. (5) shows a much more complex image which

includes shading, highlights, and more subtle gray-tones. The resulting edge-

related features are noisy and unreliable, and will often result in incomplete edge

descriptions, or multiple vertices. Such complex images provide an important test

of the minimal representation matching approach since they may contain a small

percentage of repeatable features.

Fig. (6) shows an example of overlapping geometric shapes such as that

in Fig. (4). These overlapping shapes provide a good test for the matching

algorithm because they have occlusion among the objects. The contrast of the

outer boundary of the shapes is still high, but the contrast among the objects is low

and in general do not provide edge-related features. In these experiments, each of

the shapes was matched independently of the others, so that no constraints among

the group of objects were used. For the experiments, the independent shapes

were matched with high reliability.

13



Figure 4 Feature extraction from a simple geometric shape with high contrast.
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Figure 5 Features from a gray-level image of a three-dimensional object.

The effect of employing non-positional attributes was studied for these geo-

metric shapes and the results of a study of images with simulated distortions is

shown in Fig. (7). In each case, a random subset of features were selected from

an image and a random set of synthetic features were added. Less than 50% of

the features in all of these examples corresponded to the real image features. Four

strategies were used on fifty examples of this type and the results are shown in

Fig. (7). These results indicate that the algorithm is robust in spite of very large

14
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Ftgure 6 Example of minimal representation image matching with overlapping

polygonal shapes. Models of the polygonal shapes were stored. Matching

of each of the shapes to the gray level image was carried out independently.

= =

Strategy Vertex Segement % of Correct

Attributes Attributes Matches

1 Position Only Not Used 90.5

2 All Not Used 99.5

3 Position Only Position Only 96.0

4 All All 100

w Figure 7 Statistics for matching using several strategies
with different incorporating different sets of attributes.

distortions of the data, and also that the addition of segment features, and the

attributes for vertices and segments significantly improves the performance.

An example of a complex scene with an occluding object is shown in Fig.

(8). The feature set derived from the original image is extremely noisy as shown

in Fig. (8a). The correct match of the geometric model is shown in Fig. (Sb).

Examples of matching to images of gray-level objects are shown in Figs.

15
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Figure 8 a. Example of image features for a noisy gray-level image of a polygonal shape

with an occluding object, b. Correct matching of polygonal model to image features.

(9) and 10) for the example in Fig. (5). Fig. (5) shows the image and extracted

features. Figure (9) shows the match of a model obtained from a slightly different

angle of view. The resulting data image is quite noisy and varies significantly

from the original model. The resulting match is still consistent with the model.

Fig. (10) shows a match for an image of the object which is partially occluded.

These noisy images typically had less than 40% consistent features as a basis

for the match.

6 CONCLUSIONS

This paper has described a new approach to image matching which utilizes the

minimal representation criterion as a means to obtain robust matching performance

even when image data is extremely noisy. The results are encouraging in that

they demonstrate consistent performance on samples of real gray-level images.

The computational complexity of the approach is polynomial, but still large for

applications such as inspection and robot control. Additional simplifications and

approximations have been suggested which might make the technique feasible

in these domains, and parallel implementation may be required to make the

computation time acceptable.

The minimal representation approach to unsupervised decision-making is a

general tool which has been employed in a number of different problems domains.

16
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Figure 9 Matching of the gray-level image from Fig. (5) to a stored model obtained from the same

object at a slightly different angle of view. Due to noise and distortion of the image, less than

30% of the features were consistent in this image, yet the algorithm was able to correctly match.

if:

Figure I0 Matching of the stapler model to a gray-level image which is partially occluded.

The principle provides basic properties which seem to be useful in measuring and

optimizing model structure as well as mode] parameters in a data interpretation

framework. Such a minimal complexity or minimal entropy solution is appealing

also from an intuitive point of view.

Extensions of this image matching approach to three dimensions, to problems

with multiple sensors, and to problems with moving objects are all of particular

17
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interest for robotics applications. There are clear extensions to the work described

here to all of these domains.
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